Lomonosov Moscow State University Faculty of Computational Mathematics and Cybernetics

Pressure gradient influence on global lymph flow

A.S. Mozokhina, S.I. Mukhin

17th BIOMAT International Symposium on Mathematical and Computational Biology

30th October – 03rd November 2017 – Institute of Numerical Mathematics, Russian Academy of Sciences – Moscow, Russian Federation

Motivation and goal

Functions of LS (among others):

- transport: LS network is track for infection and drug distribution;
- immune: lymph nodes and lymphoid organs fight against infections;
- drainage: 10% of blood volume goes from cardio-vascular system (CVS) to LS
- The goal of the work:
- to create a quasi-onedimensional model of lymph flow through the whole lymphatic system with respect to features of LS

Anatomy and physiology

LS

- is not closed;
- starts with lymphatic capillaries;
- ends in upper vena cava;
- has no strict hierarchy;
- has numerous lymph nodes

valves

Lymph flow

- low velocity;
- low pressure gradients;
- unidirectional

lymphangion

Lymph

enters to the LS by portions

Copyright © The McGraw-Hill Companies, Inc.

lymph node

LS as a transport system

LS network:

- lymphatic vessels;
- lymph nodes

Graph of the LS

Mechanisms of lymph propogation:

- global pressure gradient;
- valves;
- contractions

Mathematical model of lymph flow

Common values

- Ø 1.5 − 2 mm (trunks, ducts);
- \varnothing 3 5 μ m to 1 2 mm (other);
- \emptyset 20 200 µm (initial lymphatics);
- \varnothing up to 5 mm (cisterna chyli)
- *I* = 35 40 cm (thoracic duct);
- / = 1.5 cm (right lymphatic duct).

Lymphangion length:

- 5 10 cm (thoracic duct);
- 12 15 mm (big vessels);
- 6 8 mm (smaller vessels);
- 2 3 mm (the first offsets);
- 1 2 mm (small inorganic).

- Velocity:
- 0.5 1 cm/s (trunks).

Contractions:

- velocity = 1 2 cm/s;
- period about 6 s;
- d(contracted)/d(relaxed) is about 40 % (diameter reduce is up to 60 %)

Mathematical models

S(x,t) – cross-section area, u(x,t) – lymph velocity, p(x,t) – pressure; ρ – density, v – viscosity; x – axial coordinate, t – time

Valves (nodes – for rare) valve valve vessel j o vessel i N acceptable direction Valves (nodes – for rare) $Q_i = \begin{cases} Q_j, u_{i0} > 0\\ 0, u_{i0} < 0 \end{cases}$

Valves (viscosity – for frequent) $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = -8\pi v(u) \frac{u}{S}$ $v(u) = \frac{\exp(\alpha(u+\delta))v_1 + \exp(-\beta(u+\delta))v_2}{\exp(\alpha(u+\delta)) + \exp(-\beta(u+\delta))}$

Contractions

Solution:

$$u(x,t) = V(t)x + u_0(t), \ p(x,t) = P_A(t)\frac{x^2}{2} + P_B(t)x + p_0(t), \ 0 < x < l, t > 0$$
$$V(t) = -\frac{S'(t)}{S(t)}, \ P_A(t) = -\rho \left[V'(t) + V^2(t) - k\frac{V(t)}{S(t)}\right], \ P_B(t) = -\rho \left[u'_0(t) + u_0(t)V(t) - k\frac{u_0(t)}{S(t)}\right], \ k = -8\pi v$$

For
$$S = S_0 + at$$
 $p(0,t) = p(l,t) = p_0(t), t > 0$
solution:
$$\begin{cases} u(x,t) = \frac{a}{S_0 + at} \left(\frac{l}{2} - x\right), \\ p(x,t) = -\frac{\rho a}{2(S_0 + at)^2} (2a + k)x^2 + \frac{\rho a}{2(S_0 + at)^2} (2a + k)lx + p_0(t) \\ \rho a(a - 4\pi v)l^2 \end{cases}$$

with critical pressure at central point $p_{cryt} = p_0(t) + \frac{pa(a + h)}{8S(t)^2}$

Makinde O.D. Collapsible tube flow: a mathematical model // Rom. Journ. Phys, 2005, pp.493-506

S=S(t), v=v(u)Solution: $u(x,t) = u_0(t) - \frac{S'}{S}x$ $p(x,t) = p_0(t) + \rho \left[\frac{1}{2}\frac{S''}{S} - \left(\frac{S'}{S}\right)^2\right]x^2 + \rho \left[u_0(t)\frac{S'}{S} - u'_0(t)\right]x + 8\pi\rho \frac{S'}{S^2}Ix - 8\pi\rho \frac{u_0(t)}{S}I - 8\pi\rho \frac{S'}{S^2}\int_{x_0}^x Idx$ where $I = I(x) = \int_{x_0}^x v(u)dx$

Effective representation of initial lymphatics

Binary tree of initial lymphatics is substituted with one effective element with parameters that save flux, pressure gradient and lateral area of the net

Graph of the LS

- 161 lymph nodes in 46 regional groups
- 382 lymphatic vessels (7 trunks, 2 ducts, 157 effective)
- 25 valves (nodes)

Segmentation and parameters Groups of arcs in the graph:

- 1. Trunks and ducts: active contractions.
- 2. Collectors: active contractions, valves (viscosity).
- 3. Effective vessels basic equations.
- 4. Lymph nodes: active contractions.
- Valves (nodes) are between arcs of the first group

Name	d (cm)	S (cm^2)
Effective vessels	0.02	0.00024
Collectors	0.107	0.009
Lumbar trunks	0.15	0.0177
Other trunks	0.1	0.0079
Ducts, lymph nodes	0.2	0.0314
Cisterna Chyli	0.4	0.1257

Calculations

Horizontal position

- **Goals:** get presumable flux 0.023 ml/s \approx 2 l/day **Initial data:**
- Pressure gradient = 5 mm Hg
- No valves, no contractions, no gravity

5 mm Hg

0 mm Hg

Calculations in CVSS program until steady flow is established. Get presumable flux by varying parameters of effective elements

Results:

Vertical position

00 00/

Goals: obtain flux in the system

Initial data:

- Pressure gradient (dp) = 60 mm Hg
- Valves (nodes), no contractions, $|g| = 1000 \text{ cm/s}^2$

Results:

- *no flux in absence of any valves*
- flux obtained;
- no flux with smaller dp; 88.5%
- cycles;
- system fill on about 92.3%

00	.9/0				
84	.4%	87%			
96.9%		liver	stomach		^{spleen} 98.3%
95	.2%	88.2%	98.4%		pancreas
		intestines		lumbar lymp	oh nodes
92.8% 99.3%		6 99.98%	96.3%		%
		other	other 89.2%		

0 mm Hg

60 mm Hg

Contractions of cisterna chyli

Goals: obtain flux in the system

Initial data:

Pressure gradient (dp) = 5 mm Hg

- Valves (nodes), valves (viscosity, $v_2=1 \text{ cm}^2/\text{s}$), contractions of
- cisterna chyli (A=0.1 mm Hg, λ =10 cm, a=1 cm/s), no gravity

Results:

Thank you for attention!